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GEOHYDROLOGIC SETTING OF MIRROR LAKE,
WEST THORNTON, NEW HAMPSHIRE

By Thomas C. Winter

ABSTRACT

Mirror Lake is located at the lower end of Hubbard Brook valley, in the
White Mountains of central New Hampshire. The drainage basin of Mirror
Lake is characterized by high knobs and ridges and steep land slopes. In
the lower parts of the basin, steepness of the slopes is modified by glacial
deposits. The lake basin is situated largely within glacial drift, which is as
much as 50 meters thick in parts of the drainage basin. Drift in most of the
drainage basin is till; however, several localities have as much as 10 meters
of sand and gravel. Crystalline bedrock underlying the drift is composed of
schist, slate, and quartz monzonite of earliest Devonian age (about 415 million
years ago). These rocks are intensely folded and contain numerous
fractures.

Three small streams flow into Mirror Lake; the only outlet stream spills
over a small dam at the outlet, and joins Hubbard Brook about 0.4 kilometer
from the lake. Although the drainage basins of the inlet streams have a
south aspect, quantitative measures of the various basin characteristics are
considerably different. Streamflow discharge into Mirror Lake differs between
the two largest subbasins. Basin NW is more rounded in shape, is underlain
by thicker glacial drift, has greater stream discharge, and has greater sus-
tained base flow, compared to basin W.

Study of water-table configuration indicates that ground water moves
into most parts of Mirror Lake throughout the vyear, and that losses to
ground water occur principally on the southeast side. Water-level data from
potentiometer nests and bedrock wells indicate dynamic ground-water move-
ment within the fractured bedrock underlying Mirror Lake. These data also
indicate very active interchange of ground water between bedrock and overly-
ing glacial drift. Particularly strong hydraulic-head gradients occur from the
bedrock into the drift in the area between Mirror Lake and Hubbard Brook.

INTRODUCTION
Background

The hydrology of lakes has received increased attention in recent years
because of the growing awareness by limnologists and lake managers of the
importance of reliable information on water fluxes. However, lack of under-
standing of hydrologic processes as they relate to lakes has led to inadequate
instrumentation and inadequate analysis of data. For example, many studies



of chemical fluxes to and from lakes suffer from incomplete knowledge of the
hydrology with respect to: (1) Lack of onsite measurement of all compo-
nents; and(or) (2) lack of consideration of errors in the components that
were measured (Winter, 1981c). Because of these deficiencies, a quantity of
water calculated as a residual commonly has little meaning, as that quantity
could be nothing more than error in measured components (LaBaugh and
Winter, 1984). These problems can lead to inaccurate and highly misleading
water budgets. ' The additional error related to sampling and analysis of
chemical constituents is added to those of the water budget (Winter, 1981b).

Prompted by the questions posed above, as well as by the need to
understand better the role of ground water in the hydrology of lakes, the
U.S. Geological Survey began a project to study the function of lakes in the
hydrologic system. [nitial phases of the project involved numerical simulation
of theoretical ground-water flow patterns in the vicinity of hypothetical lakes.
After analyses of a variety of hypothetical lake and ground-water settings in
both two dimensions (Winter, 1976; 1981a; 1983) and three dimensions (Win-
ter, 1978), it became clear that experimental field sites were necessary to
obtain realistic estimates of the temporal fluctuations and configuration of the
water table, anisotropy of geologic units, and geometry of the ground-water
system. Onsite data from lakes also are needed to evaluate errors associated
with different techniques of measuring the other components of the hydrologic
system interacting with lakes, such as precipitation, evaporation, and
streamflow.

Accordingly, the U.S. Geological Survey identified eight general envi-
ronments of natural lakes in the United States that have significantly differ-
ent hydrogeologic and(or) climatic settings. The goal of studies at these
sites is to examine all hydrologic components interacting with the lakes,
including selected chemical and biological aspects. In establishing the
hydrogeologic criteria for lake selection, it was considered necessary to study
one lake in fractured crystalline rock. Climatic criteria included having a
lake in an area where precipitation greatly exceeds evaporation, such as in
New England. Mirror Lake initially fit both of these criteria. In addition,
there was considerable local interest [by G. E. Likens] in studying the
hydrology of Mirror Lake because of the large amount of limnological research
that has been done on the lake (Likens, 1985).

Purpose and Scope

The overall purpose of the long-term hydrologic studies of Mirror Lake
is to define the interaction of the lake with all other components of the hy-
drologic system and to concentrate on the interaction of the lake and ground
water, according to new approaches suggested by theoretical modeling stud-
ies. A secondary purpose is to evaluate the accuracy of various methods of
determining all components of the hydrologic system interacting with the lake.

The purpose of this progress report is to: (1) Describe the geologic
and hydrologic setting of Mirror Lake; (2) describe the field techniques and
instrumentation established for the study; and (3) present selected results
for the first 3 years of the study. Although the 3 years for which data are
given are from mid-1979 through September 1982, results of test drilling in
1983 also are included.



To determine the geologic setting of Mirror Lake, the following field
techniques were used: Test drilling, seismic-geophysical surveys, borehole
geophysics, and collection and analysis of drill cuttings. Instruments placed
at the site include short-wave and long-wave radiometers, several anemome-
ters, water temperature and wet-bulb and dry-bulb air-temperature sensors,
four flumes, and about fifty wells and potentiometers.
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REGIONAL SETTING
Physiography

Mirror Lake is located near the mouth of Hubbard Brook valley, in the
White Mountains of north-central New Hampshire (fig. 1). The lake lies on
the north side of Hubbard Brook, which trends east-west; therefore, most of
the drainage basin of the lake faces south-southeast.
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Mirror Lake is 15 ha in area; it has a maximum depth of 11 m and an
average depth of 5.75 m (fig. 2). Outflow from the lake drains into Hubbard
Brook, which is a tributary of the Pemigewasset River.

Mirror Lake lies at an altitude of about 213 m. The highest point on the
watershed of Mirror Lake has an altitude of about 469 m. In contrast, the
watershed of Hubbard Brook, west of the Mirror Lake area (fig. 1), reaches
altitudes greater than 1,000 m.

The drainage basin of Mirror Lake is characterized by high knobs and
ridges and by steep land slopes. The knobs and ridges principally consist of
crystalline bedrock of early Devonian age. In the lower altitude part of the
Mirror Lake drainage basin, unconsolidated glacial drift of Pleistocene age
overlies the bedrock. Thickness of the drift at Mirror Lake ranges from 0 to
about 50 m.

Climate

The following description of the general climate of the Hubbard Brook
valley is taken from Likens and others (1977).

"Although the climate varies with altitude, it is classified as
humid continental with short, cool summers and long, cold winters
(Trewartha, 1954). The climate may be characterized by: (1) Change-
ability of the weather, (2) a large range in both daily and annual
temperatures, and (3) equable distribution of precipitation. The
area lies in the heart of the middle latitudes and the majority of the
air masses therefore flow from west to east. During the winter months
these are northwesterlies and during the summer the air generally flows
from the southwest. Therefore, the air affecting the area is predom-
inantly continental. However, during the autumn and winter, as the
colder polar air moves south, cyclonic disturbances periodically move
up the east coast of the United States providing an occasional source
of maritime air. The mean air temperature in July is 19°C and in
January is -9°C (Federer, 1973). A continuous snowpack develops each
winter to a depth of about 1.5 m. Occasionally, mild temperatures in
midwinter partly or wholly melt the snowpack. A significant micro-
climatologic feature of this area is that even the uppermost layer of
the forest soils usually remains unfrozen during the coldest months
because of the thick humus layer and a deep snow cover (Hart and
others, 1962)."

Soils and Vegetation

Soils are mostly well-drained spodosols (haplorthods) of sandy loam
texture. Soil depths are variable but average about 0.5 m. A thick, 3- to
15-cm organic layer occurs at the surface. The soils are acid, having a pH
of less than or equal to 4.5; generally, they are infertile. In the Mirror
Lake area, most soils are developed on till.
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The following description of vegetation is taken from Likens and others
(1977):

"Vegetation of the Hubbard Brook Experimental Forest 1is part
of the northern hardwood ecosystem, an extensive forest type that
extends with variations from Nova Scotia to the western Lake Supe-
rior region and southward along the Blue Ridge Mountains (Braun,
1950; Kiichler, 1964; Oosting, 1956). Classification of mature
forest stands as northern hardwood ecosystems rests on a loosely
defined combination of deciduous and coniferous species that may
occur as deciduous or mixed deciduous-evergreen stands. Principal
deciduous species include beech ( Fagus grandifolia), sugar maple
(Acer saccharum), yellow birch (Betula alleghaniensis), white ash
(Fraxinus americana ), basswood (Tilia americana), red maple (Acer
rubrum), red oak (Quercus borealis), white elm (Ulmus americana);
the principal coniferous species are hemlock (Tsuga canadensis),
red spruce (Picea rubens), and white pine (Pinus strobus) (Braun,
1950). At Hubbard Brook, the vegetation 1is characteristic of a
developing, northern hardwood forest ecosystem."

GEOLOGY

Prior Information

To understand ground-water flow systems, it is necessary to define the
geologic framework through which the water moves. Prior to the intensive
studies reported here, the geology of the Mirror Lake basin was known only
from general regional studies. For example, it was known that bedrock in
the Hubbard Brook area consists of igneous and metamorphic crystalline rocks
of earliest Devonian age (Billings, 1956). The rocks consist principally of
the Littieton Formation and the Kinsman Quartz Monzonite. The Littleton
Formation is composed of quartz-feldspar-biotite schist, slate, and lesser
amounts of micaceous quartzite; it has been intruded extensively by the
Kinsman Quartz Monzonite (Moke, 1946).

The rocks originated about 415 million years ago, when sediments con-
sisting of clay, silt, and lesser amounts of sand were deposited in a shallow
marine environment that was probably intracontinental. By 410 million years
ago, mountain-building processes had begun that caused the sediments to be
metamorphosed (Littleton Formation) and intruded by the igneous Kinsman
Quartz Monzonite. The rocks were deformed at this time, principally by

folding. During the Carboniferous Periods, about 330 million years ago,
further mountain-building stresses resuited in considerable fracturing and
faulting, and possibly additional metamorphism of the rocks. Still later,

during the early Mesozoic Era, about 180 to 190 million years ago, the rocks
again were subjected to fracturing and faulting associated with further uplift
of the area.

During and after the geologic processes described above, the area was
subjected to long periods of erosion. The only significant evidence of wide-
spread deposition in the Mirror Lake area since the Mesozoic Era is the pres-
ence of glacial drift, which was deposited during the Pleistocene Epoch.



Prior to 1978, little was known of the distribution of type, texture, or
thickness of glacial drift near Mirror Lake. The general impression of most
casual observations was that Mirror Lake was situated in a bedrock basin.
This impression most likely was influenced by the presence of two bedrock
outcrops along the lakeshore. Goldthwaite and others (1951) indicated that a
gravel deposit on the southeast side of Mirror Lake is related to delta or
terrace deposits associated with the Pemigewasset River. Other than this
deposit, a reconnaissance of the area indicated that most of the drift is a
sandy, silty till that contains numerous boulders.

Methods

To define the geoclogic framework in sufficient detail to assess the hydro-
logic setting of Mirror Lake, test drilling and geophysical surveys were done.
The type of information needed includes configuration of the bedrock surface
and mineralogic and hydraulic properties of the bedrock, including distribu-
tion and hydraulic properties of the fractures. Geometry of the drift needs
to be known, so boundaries of ground-water flow systems within porous media
can be determined. Type and texture of the drift, including distribution of
the different units, need to be known so hydraulic properties such as hy-
draulic conductivity, anisotropy, and storage coefficient can be determined.

Seismic refraction surveys were done on land and seismic reflection
surveys were done on Mirror Lake. The purpose of the seismic surveys
primarily was to determine depth to bedrock, but qualitative information on
drift texture also was obtained.

A few shallow test holes, less than 8 m deep, were drilled with a power
auger. Eight deep test holes were drilled into the bedrock using air rotary
with a down-hole airhammer. For drilling through the glacial drift sections of
these test holes, an organic-based compound was used to make the drilling
fluid. Locations of seismic survey lines and test holes are shown in figure 3.
In addition to geologic descriptions of drill-cuttings, geophysical borehole logs
were made of each of the deep test holes.

Bedrock
Surface Configuration

Data on depth to bedrock obtained from these onsite studies show that
the south-central part of Mirror Lake overlies a saddle in the bedrock surface
(fig. 4). A south arm of a northeast-trending bedrock valley begins at this
saddle, and a west arm of this same valley begins beneath the lower part of
subbasin NW and joins the south arm north of Mirror Lake. A south-trending
bedrock valley also begins at the saddle underlying the south-central part of
Mirror Lake and descends toward Hubbard Brook.

The bedrock surface rises in altitude to the east and to the west from
the bedrock saddle. Bedrock outcrops occur on the east shore of Mirror
Lake; Interstate Highway 1-93 cuts through bedrock east of the lake.
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Mineralogy

Based on the eight holes drilled into bedrock, schist of the Littleton
Formation consists principally of biotite, but it also includes considerable
amounts of quartz and garnet. The quartz monzonite is white to slightly
greenish, and is composed of nearly equal amounts of microcline, plagioclase,
muscovite, and quartz.

Bedrock in hole Kh-L-BR (fig. 5) consists mostly of schist that is
intruded by several sheets of quartz monzonite. In hole K-BR, (fig. 6) only
the upper 12 m of the bedrock consist of schist. In the remaining 18 m of
the hole, black, gray, and greenish-black slate that is part of the Littleton
Formation is intruded by quartz-monzonite sheets. In hole Kh-B-BR, about
27 m of schist overlies quartz monzonite (fig. 7). Hole FS-BR (fig. 8)
penetrates mostly schist, but an 8-m-thick section of greenish-gray slate
occurs about 26 m below the bedrock surface. Four sheets of quartz
monzonite, each less than 2 m thick, occur in the hole. At site FS83E, three
bedrock holes are spaced in a triangular pattern, spaced only 10 m apart.
The large variability in bedrock lithology is clearly shown by comparing the
descriptive logs of these holes (figs. 9, 10, and 11). The rock types are
schist and quartz monzonite, but their relative positions are variable. In
hotle TR-BR, only 15 m of bedrock was drilled into because of the great
thickness of drift. The rock is mostly schist, but a thin (about 2 m) layer
of slate occurs in the hole (fig. 12). Distribution of rock types penetrated
in the drill holes and their relative position along geologic sections are shown
in figure 13.

Distribution of Fractures

The number of fractures and the extent to which they are open are the
principal controls on ground-water flow in crystalline rocks such as those
underlying the drainage basin of Mirror Lake. A number of geophysical logs
were made in each bedrock test hole to locate and measure the size of the
fractures intersected. Several types of logs show fractures directly. A
caliper log directly measures the diameter of a borehole with metal prongs
that touch the hole wall. A borehole televiewer log shows fractures directly,
as a '"photograph' of reflected sound waves (fig. 14). An acoustic-velocity
log also is a sonic-type log, which is used to locate fractures as well as to
measure porosity.

Borehole-televiewer logs provide perhaps the most useful information on
fractures, because they not only show fractures, but because they are an
oriented log they also can be used to measure the orientation and dip of
fractures. However, because they are costly and not readily available, it is
useful to compare televiewer logs to other logs that might be used as a
substitute.

in hole Kh-L-BR, the televiewer log shows fractures at about 16 m,
22 m, 28 m, 42 m, and 43 m (fig. 5). The caliper log of this hole clearly
shows a direct confirmation of those fractures, and a particularly open frac-
ture at 42 m. Of the other geophysical logs, the focused-resistivity log
shows the clearest definition of the fractures in hole Kh-L-BR. The acoustic-
velocity log also shows the fractures, but they are less well defined than in

11
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Figure 6.--Descriptive and geophysical logs of test hole K-Br.
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Figure 7.--Descriptive and geophysical logs of test hole Kh-B-Br.
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Figure 8.--Descriptive and geophysical logs of test
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Figure 14.--Borehole televiewer log showing fracture in bedrock at a
depth of 27.4 meters in test hole Kh-L-BR.

the focused-resistivity log. It also is interesting to compare the focused
resistivity with the other resistivity logs with respect to the ability of the
various probes to locate fractures. Resistivity probes measure electrical

resistance of rocks to an induced current. Spacing of the electrodes in the
logging tool is 10 cm for the focused resistivity and 41 cm and 163 cm for the
other resistivity probe. In figure 5, it can be seen that nonfocused resistiv-
ity locates only the general vicinity of fracture zones. The focused-
resistivity probe is far superior in locating the exact position of fractures.

The televiewer log of hole K-BR shows a very large number of fractures
with a great variation in degrees of dip. However, the caliper log of this
hole (fig. 6) indicates that the openings of most fractures are not large or
deep; the only fractures of significance appear to be at depths of about
27 m, 39 m, and 41 m. To complicate the interpretation of logs for this hole,
the focused-resistivity log does not agree with the caliper log as well as it
did for hole Kh-L-BR. For example, the focused-resistivity log indicates the
presence of fracture zones at about 41 m and 44 to 46 m, but the caliper log
does not. The most significant fracture zone appears to be the one at the 41
to 42 m depth.

For hole Kh-B-BR, the focused-resistivity log shows no evidence of
fractures. The caliper log shows a slight indication of a small fracture at a
depth of about 49 m (fig. 7). Yet, this hole clearly has open fractures
because ground water flowed into it to the extent that the static-water level
is always above land surface. The televiewer log made in 1983 shows a small
fracture at a depth of about 27 m and another group of small fractures be-
tween 47 and 49 m.
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The caliper log for hole FS-BR (fig. 8) shows a number of small frac-
tures at various locations to a depth of about 46 m. There is no indication of
fracturing deeper in the hole, except for a few small fractures between 70
and 73 m. The televiewer and the focused-resistivity logs made in 1983
confirm the presence of fractures at depths of about 21 m, 29 m, 37 to 47 m,
and 70 to 73 m.

At site FS83, where the three bedrock holes are closely spaced, the
televiewer logs of all three holes show numerous fractures throughout the
bedrock section. Although the caliper logs of each hole do not show any of
the fractures to be particularly large, the focused-resistivity logs clearly
indicate the presence of relatively significant fractures at a few depths in
each hole (figs. 9-11). In hole TR-BR, the short section of bedrock drilled
through contains several fracture zones that are clearly shown in the tele-
viewer and focused-resistivity logs. A particularly clear fracture is shown
by the caliper log at a depth of 55 m.

Glacial Drift
Geometry

Seismic and test-drilling data indicate that drift is thick (greater than
30 m) along the northwest shore of Mirror Lake (fig. 15). However, the 1983
test drilling showed that drift is thickest (more than 50 m) beneath the
topographic ridge on the north side of area D-n (fig. 3). Bedrock-hole
TR-BR substantiates that the ridge is a moraine (Winter, 1985) that filled the
north-trending bedrock valley descending to the north from beneath Mirror
Lake.

Drift as much as 24 m thick also is present in the bedrock valley on the
south side of Mirror Lake. This drift probably is a combination of moraine,
valley-train, and delta deposits, associated with glaciation and with subse-
quent fluvial processes in the Hubbard Brook and Pemigewasset valleys.

The data indicate that geologic materials along most of the south side of
Mirror Lake consist of glacial drift, except near the outlet dam which rests on
bedrock. The thick (greater than 18 m) section of drift southwest of Mirror
Lake also probably is a morainal (including ice-contact) depasit. In much of
the remainder of the Mirror Lake drainage basin, drift generally is between 6
and 12 m thick.

An important question on the relationship of Mirror Lake to the ground-
water system concerns the thickness and texture of drift underlying the lake
sediment. For example, if little or no drift occurs between the lake sediments
and bedrock, the only possible route for ground water to pass beneath the
lake would be through fractures in bedrock. On the other hand, if drift is
thick beneath the lake sediments, it is possible that considerably more ground
water could pass beneath the lake and discharge into Hubbard Brook, because
preliminary hydraulic tests indicate the drift is more permeable than fractured
bedrock. Data on lake-sediment thickness (Davis and Ford, 1985), and data
from the marine seismic survey, indicate that only small amounts of drift
occur between the lake sediments and bedrock east of the bedrock saddle, and
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also near the west end of the lake, where stream W enters the lake (fig. 3).
Perhaps as much as 10 m of drift underlies the lake sediments beneath the
northwest part of Mirror Lake and near the bedrock saddie on the south side
(winter, 1985). It may be noted here that the seismic reflection geophysical
method used on Mirror Lake successfully penetrated the organic sediments
only where they are less than 6 m thick. Thus, no data exist on bedrock
depth beneath the lake, where the organic sediments are thicker than 6 m.

Type and Texture

Throughout much of the drainage basin of Mirror Lake, the drift con-
sists of silty, sandy till, containing numerous cobbles and boulders derived
locally from crystalline bedrock. Deposits of ice-contact stratified drift are
scattered throughout the area. Between Mirror Lake and Hubbard Brook, the
drift is a complex mixture of till, sand, and gravel. Descriptive logs of test
holes for the scattered water-table wells are given in table 1. These data at
the potentiometer-nest sites are given with the geophysical logs in figures 5
through 12. Probable lithology of drift, as determined from seismic geophysi-
cal properties, is given in table 2.

Based on drilling data, the drift at site Kh-B is predominantly medium
sand, but it also contains much coarse sand to coarse gravel. At site K, the
drift is largely silty, fine sand to medium gravel (probably till), and it
contains scattered cobbles and boulders. At site Kh-L, the drift is silty
sand and gravel; silt was observed in the drift samples throughout the length
of hole Kh-L-BR. Although drift samples in holes K-BR and Kh-L-BR have
some characteristics of till (such as the presence of silt), seismic velocities in
the drift between Mirror Lake and Hubbard Brook (lines S5 and S6 in fig. 3)
are characteristic of sand and gravel (about 1,520 m/s). (The term seismic
velocity for this report refers to the rate at which sound is transmitted
through water-saturated rocks; it is determined by seismic geophysical mea-
surement [table 2].) However, the seismic velocity of 1,830 m/s along line S7
indicates that the drift here is a complex of both till and stratified sand and
gravel. Also, test drilling associated with construction of water-table welis in
the line of water-table wells between Mirror Lake and Hubbard Brook (wells W
7, 8, 9, 10, 13, and 14) indicate a substantial amount of till in this area,
especially at wells 9, 10, and 13.

Throughout much of the remainder of the Mirror Lake drainage basin,
drilling and seismic-velocity data indicate the drift is silty tiil; however, sand
and gravel deposits are scattered throughout the basin. Near the lake,
seismic-velocity information indicates that the north and northwest perimeter
of the lake (lines S9-S13) are till; seismic velocities are 2,130 to 2,260 m/s.
Test drilling at well W18 also substantiates the presence of till on the north-
west side of the lake. At line S8, however, the velocity is 1,520 m/s, which
is more characteristic of sand and gravel. At higher altitudes in the drain-
age basin, drilling data at site FS and wells W4, W15, and W16, as well as
seismic-velocity data along line S4, indicate the drift is till; but
seismic-velocity data along line S2 indicate the drift is sandy; velocity is
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Table 2.--Seismic-geophysical characteristics of glacial drift
[m/sz meters per second ]

Seismic-survey line Approximate Probable
seismic velocityl(m/s) 1ithology
Near lake

S$5-56 1,520 Sand and gravel
S7 1,830 Sand and gravel, and till
S8 1,520 Sand and gravel
$9-513 2,130 to 2,260 Till

Higher in drainage basin
S1 1,520 Sand and gravel
S2 1,520 Sand and gravel
S3 1,460 Sand and gravel
S4 2,130 TiN

1Seismic velocity refers to the rate at which sound is transmitted
through water-saturated rocks, determined by seismic-geophysical measure-
ments.

1,520 m/s. At seismic line S3, the drift also has seismic velocities
characteristic of sand and gravel (1,460 m/s), but the 52 m of drift
penetrated at site TR is entirely till. At test hole W2 and seismic line 51,
the drift is clearly sand and gravel. It is interesting to note that many of

the sandy deposits occur at an altitude of about 253 m.

Test drilling on the flat terrace just below the U.S. Forest Service
station indicates sand and gravel at wells W11 and W12, but till at well W6.
Excavations on this terrace and the test drilling at site FS83E show that the
terrace is largely stratified, ice-contact sand and gravel to a depth of about
3 m, and that this sand and gravel is underiain by till.

As indicated by the above description of glacial deposits, at a few
localities drilling data and geophysical data do not appear to be consistent.
For example, the samples from test holes K and Kh-L indicate mostly till, but
the seismic data from lines S5 and S6 indicate sand and gravel. The same is
true of the area by test holes FS-BR and W4 and seismic line S2. The ap-
parent disagreement in texture probably is related to the indirect nature of
geophysical data. For example, because the till in the Mirror Lake area is
sandy, it is difficult from seismic data alone to distinguish between sandy tili
and silty sand and gravel. In addition, geologic samples from drilling are
direct evidence from a very small part of an area, and seismic data are
indirect evidence from a larger area, that integrates all deposits in that area.
Both drill samples and geophysical data are useful, but it will be necessary to
do more intensive geologic studies at selected localities to fully understand
the geologic deposits in the Mirror Lake drainage basin.
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To summarize what is known at the present, drilling and seismic-velocity
data indicate the drift is till on the north and northwest sides of Mirror
Lake, and a large amount of sand and gravel occurs on the south side.
However, till also is present on the south side, indicating complex glacial
deposits in this area. Elsewhere in the drainage basin, the drift is princi-
pally till; but in places, the drift is sandy. Scattered areas of sand and
gravel alsa occur, passibly from local ice-contact depasition.

A discussion of the glacial history of the Mirror Lake area is presented

by Winter (1985). The discussion cancerns the origin of various types of
glacial depasits as well as the origin of the lake basin itself. :

Drainage Basin Morphology

Drainage-basin characteristics of the Mirror Lake area result from the
geologic processes discussed previously, as well as from subsequent modifica-
tion of the landscape by erosion and development of soils and vegetation.
Knowledge of physiographic characteristics of a drainage basin is essential to
understanding both surface-water and ground-water movement through the
basin. The following discussion provides some quantitative measures of the
drainage basin of Mirrar Lake that will be used in future studies of the
hydrology of the lake.

Mirror Lake is 15 ha in area, and the area of its drainage basin (exclud-
ing the lake) was about 103 ha prior ta the canstruction of Interstate High-
way 1-93; thus, the ratioc of drainage area to lake area was 6.9. As part of
the construction of Interstate Highway 1-93, much of the surface drainage
east of Mirror Lake was separated from the lake by a small earthen dam
(Likens, 1972). As a result, the area of subbasin NE decreased from 20 ha
to 2.5 ha, making the present total area of drainage to Mirror Lake 85 ha and
the modified ratio of drainage area to lake area 5.7. Subdivisions and desig-
nations of the subbasins associated with Mirror Lake are shown in figure 3.

Morphometric characteristics of Mirror Lake are given in table 3 and
figure 2. Lake-depth contours show that the lakebed is asymmetric; its
deepest part (11 m) is much closer to the north shore than to the south
shore. The north side of the lakebed also contains numerous boulders. Most
of the gently sloping lakebed on the sauth side of the lake is sandy.

Three small streams flow into Mirror Lake (fig. 3). The two streams,
designated NW and W, that enter the west side of the lake drain the south
slopes of a bedrock knob that reaches an altitude of 469 m. The third stream
enters the northeast side of the lake and drains modified subbasin NE.
Quantitative descriptors of subbasins NW and W, as well as of subbasin NE,
cavering the time before and after construction of the earthen dam along
Interstate Highway 1-93 are given in table 4.

Subbasins W and NW have considerably different quantitative topographic
characteristics. These characteristics are useful for quantitative comparisons
of basins, and they commonly are used in hydrologic studies, such as
rainfall-runoff analysis (U.S. Geological Survey, 1978). Subbasin W is about
11 percent longer and about 37 percent narrower than subbasin NW, and its
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Table 3.--Morphometric characteristics of Mirror Lake (from Likens, 1985)

[ m=meter; ha=hectare; m%square meter; mcubic meter ]

Location: 43° 56.5' N, 70° 41.5' W

Maximum effective length 610 m Average depth 5.75 m

Maximum effective width 370 m Length of shoreline 2,247 m

Area 15.0 ha Shore development 1.64

Maximum depth 11.0 m Volume development 1.57

Relative depth 2.5 percent
Volume

Depth Area Percent Stratum
(m) (m2 x 10%) of total (m) (m3 x 103) Percent of total
0 15.0 100.0 0-1 142.9 16.6
1 13.6 90.5 1-2 130.0 15.1
2 12.4 82.9 2-3 119.5 13.9
3 11.5 76.5 3-4 110.0 12.8
4 10.5 70.1 4-5 101.8 11.8
5 9.86 65.7 5-6 94.1 10.9
6 8.96 59.7 6-7 78.5 9.1
7 6.79 45.2 7-8 48.9 5.7
8 3.21 21.4 8-9 23.6 2.7
9 1.61 10.7 9-10 10.7 1.2
10 0.609 4.06 10-11 2.0 0.2
11 0 0 -_—

Total 862.0 100.0

perimeter (P_) is about 26 percent greater. Basin length (L ) is somewhat
misleading in~ the instance of subbasin W, because it is defined as a straight
line from the stream outlet to the basin divide; therefore, it cuts across
subbasin NW and actually is not much longer than subbasin NW. Main chan-
nel length (LC2) gives a more accurate description of the actual length of the
subbasin.

Quantitative values related to the shapes of subbasins also show striking
differences between subbasins W and NW (table 4). To describe basin shape,
many studies use basin length (L,) in the calculation. Even though basin
length is not a good descriptor for subbasin W, a shape factor using basin
length, such as basin shape (SH 1), clearly shows the generally elongate
shape of subbasin W relative t0 subbasin NW; values differ by about
80 percent. Compactness ratio (SH_,,) is the shape factor easiest to
visualize, because it compares the shape of a basin to a circle. A perfectly
round basin, for example, has a compactness ratio of 1.0; in the instance of
Mirror Lake subbasins, the compactness ratio clearly shows subbasin NW is
more round than subbasin W.
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Definitions of Topographic Characteristics Appearing in Table 4.

Basin Length (LB)

Basin Width (WB)

Basin Perimeter (PB)

Basin Land Slope (SBl)

Basin Diameter (BD)

Basin Shape (SHBI)

Compactness Ratio (SHB4)

~—Straight-1ine distance from outlet to the point
on the basin divide used to determine main
channel length, LCZ’

—Average width of the basin determined by
dividing the area, A, by the basin length, LB:
wB = A/LB.

——The length of the curve that defines the surface
divide of the basin.

—Average land slope calculated at points uniformly
distributed throughout the basin. Slopes normal
to topographic contours at each of 50 and pref-
erably 100 grid intersections are averaged to
obtain Sp,. The difference in altitude for the
two topog}aphic contours nearest a grid inter-
section is determined and the normal distance
between these contours is measured.

—Diameter of the smallest circle that will
encompass the entire basin.

——A measure of the shape of the basin computed as

the ratio of the length of the basin to its
average width:
(Lg)?

Bl A

SH

——The ratio of the perimeter of the basin to
the circumference of a circlie of equal area.
Computed from A and PB as follows:

p
_ P
SHpq =

2(rtA)1/2

Main Channel Length (ch)———Length of main channel from mouth to basin

divide.

Main Channel Stope (SCl) —An index of the slope of the main channel com-

Sinuosity Ratio (P)

puted from the difference in streambed altitude
at points 10 percent and 85 percent of the dis~
tance along the main channel from the outlet to
the basin divide. Computed by the equation:

o o tas - Eyp)

C1 0.75 LC2 )

——Ratio of main channel length to the basin length:

. e2

p
Ly
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Main~channel slope (S 1) as well as compactness ratio are drainage-basin
characteristics that are pgtentially useful in rainfall-runoff analysis. The
relatively large difference in these characteristics for subbasins NW and W
may be expected to reflect runoff characteristics of the subbasins. For
example, timing of peak discharge may be expected to be faster in a stream
that has a steep slope and short channel lengths, compared to a stream that
has a more gentle slope and longer channel lengths.

Part of the drainage basin of any lake cannot be included as part of the
basins of inflowing streams. Runoff from these areas does not collect in
channels before entering the lake; water flows directly to the lake either as
overland flow, or, if the water infiltrates, as subsurface flow in the unsatu-
rated and ground-water zones. Areas of direct runoff are particularly impor-
tant to lakes, because they are always directly adjacent to the lake. Because
of this proximity, and because human development commonly is most intense in
these areas, they can be the most critical parts of the drainage basin to
manage.

Water from the area of surface drainage into Mirror Lake that does not
become channelized, but flows directly into the lake, encompasses 22 ha, or
about 26 percent of the modified total drainage area. This area consists of
four separate tracts, separated by stream inlets and outlet, identified as D-n
(north), D-w (west), D-s (south), and D-e (east) (fig. 3). Quantitative
measures of topographic characteristics of these areas of direct drainage are
given in table 4.

HYDROLOGY

Methods and Instrumentation

Atmospheric Water

As part of the Hubbard Brook Ecosystem Study, precipitation gages are
located on two sides of Mirror Lake. A recording, weighing-bucket gage is
located about 0.4 km west of Mirror Lake at the U.S. Forest Service Head-
quarters; a standard nonrecording gage, read daily, is located about 0.5 km
southeast of the lake at Pleasant View Farm. Because of the proximity of
these two precipitation gages, no additional gages were installed for the
Mirror Lake hydrology studies.

Evaporation from Mirror Lake is being measured several ways. Because
one of the goals of this project is to obtain the most accurate measurement for
each of the hydrologic fluxes, evaporation is being measured by the energy-
budget method. This method is considered to be one of the most accurate for
measuring evaporation (Harbeck and others, 1958; Gunaji, 1968), although at
certain times of year it is less accurate than at other times (Ficke, 1972).
Many instruments and many man-hours are needed to do energy-budget
studies.

The mass-transfer method (Harbeck and others, 1958), which is less

instrument- and labor-intensive than the energy budget, also is being used at
Mirror Lake. Mass transfer is an empirical method that requires calibration of
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a coefficient by relating wind- and vapor-pressure data to an independent
measurement of evaporation. The strategy at Mirror Lake is to determine a
mass-transfer coefficient by calibration against evaporation determined by the
energy-budget method. The energy-budget studies are expected to be done
for 3 to 4 years. After this period of time, the mass-transfer method will be
used for monitoring evaporation.

Because of the large number of onsite sensors in energy-budget studies,
it will be possible to evaluate other approaches to estimating evaporation.
Many of these approaches use a combination of National Weather Service
network data and a few onsite sensors; other approaches rely exclusively on
network data.

Determination of an energy budget requires measurement of all forms of
energy entering or leaving a lake, including measurement of the change of
heat energy stored within the lake. The equation used to calculate evapora-
tion by the energy-budget method is:

Qs j Qr * Qa } Qar ) Qbs * Qv j Qx

_ , (1)
L(1+R) + To
where:

Q. = incoming solar radiation;

Qi = reflected solar radiation;

Qa = incoming long-wave radiation;

Q... = reflected long-wave radiation;

Q;E = Tong-wave radiation from the water;

QV = net energy advected into the lake;

QX = increase in stored energy;

L™ = Tlatent heat of vaporization;

R = Bowen ratio, which is the energy conducted from the water
as sensible heat (Q,_) divided by the energy used for
evaporation (Q ); anhd

TO = temperature of witer surface.

The Bowen ratio is computed from measurements of air and water-surface
temperature and the dew point. Informative discussions of the theory and
assumptions related to the energy budget, including the Bowen ratio, are
given by Anderson (1954) and Ficke (1972).

Data needed to solve the energy-budget evaporation equation include:
(1) Incoming short-wave and long-wave radiation; (2) air temperature;
(3) dew point; (4) temperature and discharge of inlet and outlet streams;
(5) temperature and quantity of ground-water seepage; (6) lake-surface
temperature; and (7) periodic temperature surveys of the entire water body
to measure changes in heat stored.

At Mirror Lake, short-wave solar radiation is measured with an Eppley
Precision Pyranometer (Model PSP)*, and long-wave radiation is measured with
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Evaporation studies of Mirror Lake, as determined by the energy-budget
method, are only partly completed; therefore, evaporation values are not
reported for this report. Instead, selected information on climatic character-
istics, as determined from onsite sensors, is presented.

A graph of daily average air temperature recorded by the
hygrothermograph on the shore of Mirror Lake is shown in figure 23. Daily
average air temperature exceeded 20°C for occasional brief periods. Highest
temperatures were in 1979 and 1982. At the other extreme, lowest daily
average air temperature was less than -18°C for only two brief periods in the
winter of 1980-81. Daily average relative humidity, as recorded by the same
instrument, shows that relative humidity commonly is greater than 60 percent
regardless of seasocon.

Daily average wind speed 2 m above the water surface generally is less
than 6.4 km/h. However, in 1980, daily average wind speeds of 8.0 to
9.7 km/h were not uncommon.

Daily average temperature of the lake surface (fig. 24), as recorded by
the sensor located beneath the raft, reached as high as 27°C each year. Two
summer-tempefature peaks are usually shown; the highest temperature is in
July, and a secondary high is in August.

To indicate the use of these data for energy-budget studies, basic
information derived from them that is needed to calculate the energy flux(Q)
values of equation 1 is given in tabile 5. These data are daily averages, or
totals, that were recorded by the primary instruments shown in figure 16.
The period shown (Julian days 219-233) is for the days between two thermal
surveys of the lake water.

Surface Water

Data on stream discharge from basins W and NW are discontinuous from
the time of flume construction in August 1979 until February 1981 (fig. 25).
The flumes were not winterized in the winter of 1979-80, so data are missing
from mid-December, 1979 to May 1, 1980. The second gap in the streamflow
record is from mid-December, 1980 to mid-February, 1981. Aithough the
flumes were winterized at that time, the problem related to the loss of heat
mentioned earlier resulted in no record for the 2-month period. The flumes
worked well and remained ice-free during the winters of 1981-82 and 1982-83.

Because of the impending need to dismantle flume W in the summer of
1982, the recorder was removed from the flume from mid-May to late June.
The recorder was reinstalled in late June, but the flume finally was removed
in late August.

The general configurations of streamflow hydrographs from streams W
and NW are very similar in shape (fig. 25). However, volumes of discharge
differ between the two basins. Most of the time, streamflow discharge is
greater from basin NW (fig. 25A) than it is from basin W (fig. 25B). Anoth-
er possible difference in the character of streamflow discharge between the
two basins is the shape of their recession curves. In many parts of the

45



“sjudwna3sul dnydeq woay uoissaabaa aeaul| AQ punoy sem zzz Aep 4oy aanjedadway q(nq-1am;

L7999 0°LLY G8°IT 96°'11 ¥0°'11 6€€ "’ 9%6 L 89 "v¢ €97, Il vt 02 (Bbny 12) €€2
rA A7 2°622 A M GL°S iv'S v81° 822°L1 102°9¢ 1991 ¢l 61 98 °'1¢ FAXA
0°969 689G L€V L'y 6tV 1] LS0 €T 909 '6¢ 69 ¢l 29°L1 8y 12 1€¢
0°L€9 ZEvYy 10°¢L 66°9 0.9 c1e 62021 001" 4L¢ 9821 01°L1 1§ Ar A4 0€e
¢'61L 0°'8vp 6v°9 €L°9 €€°9 091" eve 91 0y 82 8 91 60°0¢ 8E "€¢ 622
9°969 6 €84 66 '€ 4 1Ty L91° 000°91 996 '8¢ €291 1661 16°¢¢ 8¢¢
2 °60L 9°61S 869 19°9 €€'9 622" 800 ST G99°L2 G6'v1 v6 L1 QL ¢¢ Y X214
v 69 8 98¢ 10°9 22 10°S 81¢" L1211 8vS L2 €G°ET 09 ST 89°¢2 922
€°91L L°192 €0V 2y {18 Q¢ 162°SL {80°8¢C 8¢ "¥1 8091 00 °€¢ Gq2¢
£ 'G69 0°66¥% ve'v 18 A 9 Sl 269 €1 LS. °82 €9°¢l 16°91 6€ ‘€2 vie
L7LS9 6 °9¢S 1979 05°9 6279 eve” S0§°21 16 '8¢ L0°ET 06 91 8b ‘€2 | X44
0°€9. S°G9% (1] ) It°'9 q9°G ot SSL8t b 62 c0°'81; 88°02 8L°¢C éee
2°2£8 PArat 19°¢ L0°E 09°2 1274 11 2P 04 6ST '62 G6 "81 8t 61 29°¢€Z 122
1°18L 6 'v9v (17 % v9°¢ 8€ 't 881" eLy 81 62 0€ 8L°L1 09°0¢ €€ v 02
v'91L 8 €499 ¥6°¢€ €2V 20° ¥ G20 208 °S1 v6v 62 89 °'S1 0L 81 18°€2 (bny £) 612
(ssajuols (saeq (saeq (20) (20) (20)
(Aep/zwd/sataoed) (ysun) (yswy) (y/uwy) -uawmip) -t tw) -1 lw) aanje aanje ainje 2861
IAeM SABM ) w 29 W 19 otjea v3 03 -a3dway ~Jdadwajy -Jadway Aep
buoi 140Ys puLM puLm puim uamog aJsaydsowje a9)em aie ate J3ajem uernge
ae|os Jae|os 14ey 1jey 1iey aunssaad aanssaad  qinq 33m  qinq Aup dJejuns
aodep aodep ey 1jey 1iey

mnw_m:cw S1918WIIU8d =, WD !iNoy Jad 123WOo=y/ W) 1918w =W je=y 'snis|a) 8aibap=,)]

9ye7 Jo.lyy 1o SI0SudS 9}ISUO W0l elep ewl)--s a|qel

46



DISCHARGE, IN CUBIC FEET PER SECOND
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Figure 25.--Daily average discharge from inlet streams
NW, W, and E.
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graphs, the slope of the recession following a high-flow peak is flatter for
stream NW than it is for the same recession period of stream W. Differences
in streamflow recession are most pronounced for the drier years of 1979,
1980, and 1982; differences in recession are not as evident for the relatively
wet year of 1981. Studies currently are underway to assess the recession
characteristics of these streams, including whether or not the differences, if
any, are statistically significant.

The shape of the discharge hydrograph of stream E also is similar to the
shapes of the discharge hydrographs of streams W and NW, but the volume of
discharge is much less (fig. 25C), about an order of magnitude less for much
of the time. The hydrograph of stream E also shows a certain consistency to
its base flow that would not be expected from the characteristics of its drain-
age basin. It is likely that deeper ground water associated with its larger,
former (pre-freeway), drainage basin continues to move into stream E near
Mirror Lake, as well as directly into the east side of Mirror Lake.

The stage of Mirror Lake is monitored continuously. The data are used
to calculate lake volume and outflow discharge, using a formula for a broad-
crested weir. Characteristics of outflow can be seen from the discharge
hydrograph (fig. 26). Outflow was minimal during late summer of 1979 and
1980, when the lake stage was lowest (fig. 27); outflow increased rapidly in
response to the onset of increased fall precipitation. Although data on out-
flow are not yet available for the last half of 1981 and for all of 1982, the
close relationship of lake stage to outflow indicates it is unlikely that outflow
decreased much during the late summer of 1981. The stage hydrograph
indicates that, in late summer of 1982, Mirror Lake outflow probably again
decreased to minimal quantities.

Ground Water

Ground-water data collected to date consist primarily of water-level
altitudes in potentiometers and wells. Water levels in all potentiometers and
wells fluctuate seasonally, and show quick response to ground-water re-
charge. Hydrographs of all ground-water levels also show differences in the
ground-water regime from year to year. For example, like precipitation and
streamflow, ground-water hydraulic heads remained relatively high throughout
the wet year of 1981.

Of particular interest are the comparative altitudes of water levels in the
groups of potentiometers because these water levels show the vertical distri-
bution of head and the implied direction of wvertical flow at a given site.
That this distribution of head is complex and changes seasonally at some
localities is shown clearly for nest Kh-L (fig. 28). In the fall of 1979 and
winter of 1979-80, water level in the bedrock well at this site was higher than
in all potentiometers in the overlying drift. As a result of recharge in the
spring of 1980, water levels in the three shallowest potentiometers (15, 20,
25) were higher than the water level in the bedrock well. (The graph for
potentiometer 20 is not shown to avoid clutter; the altitude of its water level
is nearly always between potentiometers 15 and 25.) This pattern of the
bedrock well having the highest head in fall and winter, and the shallowest
potentiometers having the highest head in spring and summer, repeated itself
for the 2 subsequent years.
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For the entire period of record at site Kh-L, the variation of head with
time within the drift remains rather consistent, regardless of season. For
example, although the water Ilevels are only slightly different in
potentiometers 8, 15, 20, and 25, there is a consistent decrease in head with
depth. Between potentiometers 25 and 30, a relatively large (about 0.6 m)
decrease in head with depth is consistently present. A continued decrease in
head with depth occurs between potentiometers 30 and 35. The heads in
potentiometers 35 and 39 are nearly always the same, indicating a consistent
lateral flow near the base of the drift at this site.

At site K, head in the bedrock well is nearly always considerably higher
than heads in the drift potentiometers, indicating a large gradient from the
bedrock into the drift (fig. 29). Within the drift, differences of head are
small. Although the head in potentiometer 41 often is greater than the head
in the other two, there are a few times when head gradients reverse within
the drift at this site.

At site Kh-B, head in the bedrock well always is considerably greater
than heads in the drift potentiometers (fig. 30). In fact, water level in the
bedrock well is always above land surface; to prevent the well from flowing,
the casing had to be extended. Heads in potentiometers 22 and 41 are simi-
lar, but reversals of head between the two are common. The head in
potentiometer 61 is consistently about 1 m lower than head in the two shallow-
er potentiometers.

To relate the above information on heads in potentiometers to ground-
water flow between Mirror Lake and Hubbard Brook, a hydrologic section
through the three potentiometer nests is used (fig. 31). Definition of the
water table is necessary to construction of a flow section, because the lines
of equal head are projections of water-table contours into the ground-water
system.

A ground-water flow section can be drawn for any date that concurrent
measurements are made. The date of August 4, 1982, was chosen because it
was the first date that measurements were made following installation in
August 1982 of the additional water-table wells between Mirror Lake and
Hubbard Brook. In the upper part of the ground-water system, the flow
section shows seepage from Mirror Lake, as well as a downward component of
flow from the water table in the area between the lake and well 13. From
this point to Hubbard Brook, an upward component of flow toward the water
table generally occurs. The very strong upward gradient in the vicinity of
well 14 and nest Kh-B explains the large seep area at the base of the slope
from Mirror Lake Road. The 8-cm flume was installed at the outlet of this
seep area in 1982.

Across the entire section, a large gradient of head occurs from the
bedrock into the drift. The point of lowest head in potentiometer 61 at site
Kh-B indicates that flow probably moves at an angle to the section, down the
base of the bedrock valley.

Elsewhere in the Mirror Lake drainage basin, the only data on vertical

distribution of head is at site FS. Here, a consistent and large upward
gradient of head occurs between potentiometers 35 and 25. A consistent and
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large downward gradient of head also occurs between potentiometer 35 and
bedrock (fig. 32). These data indicate that ground-water flow within drift
on a valley side is more complex than is commonly believed; the data also
indicate the need for additional research in such environments.

With installation of the additional water-table wells in August 1982, it
became possible for the first time in the study to draw a map of the areal
configuration of the water table, using data from measurements made October
14, 1982. The map (fig. 33) shows ground-water movement toward the
streams and toward the lake on the west side. Ground water moves toward
the lake on the southwest side up to the part of the shoreline that has the
large reentrant.

There are no wells yet on the northeast side of Mirror Lake, but the
steady base flow and presence of ground-water seeps along stream E indicate
ground-water movement toward the lake on this side also. There are no wells
on the southeast side of the lake, and it is conceivable that seepage from the
lake occurs along at least part of this shoreline, especially near the outlet.

The only area of known seepage from Mirror Lake is on the south side,
between the outlet and the reentrant mentioned above. This is the part of
the Mirror Lake drainage basin that has received the most intensive
ground-water investigation. '

NEED FOR ADDITIONAL STUDIES

Work during the first 3 years of the hydrologic studies of Mirror Lake
concentrated on establishing instrumentation. Additional instrumentation for
measurement of evaporation is not planned. Following the energy-budget
studies, it is anticipated that subsequent long-term monitoring of evaporation
will be done by the mass-transfer method.

The method of measuring streamflow into Mirror Lake is adequate, and
the gages will be operated for the foreseeable future. Streamflow data for
the Mirror Lake subbasins showed differences in discharge from the two
largest subbasins. Analysis of the effect of topographic and geologic setting
on stream discharge should increase understanding of streamflow generation in
small basins underlain by thick glacial drift, as well as subsurface water
movement directly into lakes in such settings.

Considerably more work will be done on ground-water studies near
Mirror Lake. Data analyzed so far indicate the complex flow systems that can
exist in areas like the Mirror Lake basin, seen in the water-table map of the
area (fig. 33) as well as in the hydrologic section between Mirror Lake and
Hubbard Brook (fig. 31). Because each of these figures represent only one
date, similar analyses need to be made for a wide variety of climatic
conditions.

Dynamic interrelationships in ground-water movement between drift and
bedrock will be examined in much greater detail. These interrelationships, in
addition to more detailed study of flow within the bedrock-fracture system,
prompted the additional drilling in 1983.
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Figure 33.--Water-table configuration in part of the Mirror Lake

drainage basin on October 14, 1982.
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Prompted by recent theoretical studies of variably saturated flow (Win-
ter, 1983), additional work is planned on subsurface flow. The models devel-
oped in that study indicate that future work needs to concentrate on recharge
and ground-water movement directly adjacent to lakes, as well as adjacent to
small streams in the watersheds.

Hydraulic testing of the wells and potentiometers near Mirror Lake has
been initiated. Much additional testing needs to be done, before reliable
estimates can be made of ground-water discharge to Mirror Lake and seepage
losses from Mirror Lake.

Because of the paucity of data on aquifer properties, as well as incom-
plete evaporation studies, no attempt is made in this report to estimate a
water balance for Mirror Lake. When these studies are complete, perhaps by
1986, it will be possible to back-calculate water budgets for the lake from the
time the flumes were installed in 1979 and also to evaluate calculated balances
done earlier (Likens, 1985).

Chemical-quality samples were collected by G. E. Likens on precipitation
and on the streams flowing into Mirror Lake since before these hydrologic
studies began in 1979. However, ground-water samples from a few wells and
potentiometers were collected only occasionally by Clyde Asbury (Cornell
University) for his dissertation work prior to 1983. In 1983, all wells and
potentiometers were sampled for chemical analysis to initiate studies on the
geochemical environment of Mirror Lake.

SUMMARY

Mirror Lake is located at the lower end of Hubbard Brook valley, in the
White Mountains of north-central New Hampshire. The lake is situated largely
within glacial drift, which is as much as 50 m thick in parts of the Mirror
Lake drainage basin. Drift in most of the Mirror Lake drainage basin is till,
but several localities have as much as 10 m of sand and gravel. Sand and
gravel is thickest near Hubbard Brook. Little or no drift occurs between
Mirror Lake sediments and bedrock at the point of maximum sediment thick-
ness; at other places under the lake sediments, drift is as much as 10 m
thick.

Crystalline bedrock underlying the drift is composed of schist, slate,
and quartz monzonite of earliest Devonian age (about 415 million years ago).
These rocks are intensely folded and contain numerous fractures.

Because of the erosion-resistant properties of the bedrock, the drainage
basin of Mirror Lake is characterized by high knobs and ridges and steep
land slopes. In the lower parts of the basin, steepness of the slopes is
modified by glacial deposits. The total area of the drainage basin, including
the part cut off by Interstate Highway 1-93 and excluding the lake, is about
103 ha.

Mirror Lake, which lies at an altitude of about 213 m, is 15 ha in area,

has a maximum depth of 11 m, and has an average depth of 5.75 m. Total
water wvolume of the lake is about 860,000 m3; volume development is 1.6.
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Current studies of evaporation losses from Mirror Lake use several
methods. Emphasis has been on the energy budget of the lake.

Three small streams flow into Mirror Lake; the only stream flowing out of
the lake joins Hubbard Brook about 0.4 km from the outlet of the lake.
Although the drainage basins of the inlet streams have a south aspect, quan-
titative measures of the various basins are considerably different. Streamflow
discharge into Mirror Lake differs between the two largest subbasins. Basin
NW, which has a rounder shape and much thicker glacial drift than basin W,
has greater stream discharge, as well as greater sustained base flow.

Study of water-table configuration indicates that ground water moves
into most parts of Mirror Lake; losses to ground water occur principally on
the southeast side. Water-level data from potentiometer nests and bedrock
wells indicate dynamic ground-water movement within the fractured bedrock
underlying the Mirror Lake drainage basin. These data also indicate very
active interchange of ground water between bedrock and overlying glacial
drift. Particularly strong hydraulic head gradients occur from the bedrock
into the drift in the area between Mirror Lake and Hubbard Brook.
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